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Abstract. It is shown that any function froni.? can be represented as a linear combination

of M self-fractional Fourier functions of orde¥l, which are orthogonal to each other. Each

of them contains a selection of Hermite—Gauss modes of the generator function. The physical
meaning of the synthesis of self-fractional Fourier functions is discussed.

1. Introduction

Self-fractional Fourier functions (SFFFs) [1-4], which are invariant under the fractional
Fourier transform (fractional FT) [5] for some angle, are closely related to imaging
phenomena in first-order optical systems and has applications in the theory of laser resonator
modes. They are eigenfunctions of the corresponding fractional FT operator. SFFFs cover,
as a particular case, self-Fourier functions (SFFs) [6-9], whose Fourier transforms (FTs)
are identical to themselves. It has been shown [1,2] how to generate a SFFF from any
transformable function for some angler ® /M, where M and N are relatively prime
integers. Moreover, a SFFF for an angtel2/M is also one for angles2i /M, j =1, 2, ...

[2]. This allows us to define a SFFF of ord&f. The only SFFFs for angles such that

a/2r is an irrational number are the Hermite—Gauss functions [3].

Here we will prove that any function from? can be represented as a sumMfself-
fractional Fourier functions of orde¥l which are orthogonal to each other. Also it will be
shown thatM orthogonal SFFFs of ordéWf can be constructed from any fractional Fourier
transformable generator function. We will show that the procedure for the construction of a
SFFF corresponds to a mode filtration of the related generator function, which in the limit
caseM — oo reduces to a one mode selection.

2. Some definitions
The fractional FT at an angle of a function f(x) is given as follows [10, 11]
R f@lw = [ F@K, M

with the kernel

Ko(x,u) = (2

1—icota _cosa(x? 4+ u?) — 2xu
exp| i _ )
2 2 Sinx

1 Also: A L Mintz Radiotechnical Institute, Moscow, Russia.
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This transform describes, except for a phase shif?, the time evolution of the wave
function of the harmonic oscillator [12], as well as the wave propagation through a quadratic
refractive index medium in paraxial approximation [11-14]albr o + 7 is a multiple of
27, the kernelK, (x, u) reduces taS(x — u) or 8(x + u), respectively. Thus the fractional
FT at angle 2n (n is an integer) corresponds to the identity operator. doe /2,
relationship (1) is the ordinary Fourier transform (FT).

A function f,(x) is a self-fractional Fourier function for angke if it satisfies the
following equation

R*[fou ()] () = Afo(u) 3)

where A is a complex constant factor. In other wordg,(x) is an eigenfunction of the
corresponding fractional FT operat®f with eigenvalued. From (1), (2) and (3) it follows
that any arbitrary function is a SFFF far= 27n, a symmetric (even or odd) function is
SFFF fora = 7n, and that a SFF is SFFF far= 7n/2, wheren is an integer.

It is well known from quantum mechanics (see, e.g., [12]) that the Hermite—Gauss
functionsW,, (u)

W, () = (v 2'n)) "2 exp(—u? /2) H,, (u) @
where H, (u) are the Hermite polynomials, are SFFFs for any anrgle
R [W, ()] (x) = exp(—ian) ¥, (x) (5)

with eigenvalue ex@-ian). Note that the kernel of the fractional FT equals the propagator
of the non-stationary Sctdinger equation for the harmonic oscillator, except for the factor
explia/2).

It has been proven [3] that /27 is an irrational number then the Hermite—Gauss
functions are the only solutions of (3).

If /27 is rational we can represent an anglén the forma = 27 N/M, where N
and M are relatively prime integers amd < M. Then as was proved in [2], a SFFF for
any angleow = 27 N/M is also one for the anglen2 M and vice versa. This allows us to
define a SFFF of orded, which is an eigenfunction of the fractional Fourier transform
operatorR% /M

From the additive property for fractional FR*Rf = R**#[10] and (3) it immediately
follows that if a function is a SFFF fax = 27/M with eigenvalueA it is also one forxk
(k =1,2,...) with eigenvalueA*. Moreover, taking into account the Parseval relation for
the fractional FT [10] and the fact that the fractional FT is periodé?[ f (x)](u) = f(u)
implies thatA™ = 1, so we get that\ = exp(+i2zL/M) whereL =1, ..., M.

3. Decomposition on the self-fractional Fourier functions

It has been shown in [7] that any Fourier transformable function is the linear combination
of four self-Fourier functions. Let us prove that any function frérhcan be represented
as a linear combination a¥/ orthogonal SFFFs of orde¥.

Because the Hermite—Gauss functions form a complete set ib’tBpace, any function
g(u) that belongs to this space can be expanded as

gu) =Y g, W, (u). Q)
n=0

Subdividing the series intd/ partial ones we have

M-1 00 M-1
gy =Yy (ZgHmeHmM(u)> =N Fwe (7)
L=0

L=0 “m=0
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According to (5) the fractional FT of (1), . at the anglex = 27 /M is

00 Cion(L Y
RZMLf ()] (x) = ZgLerM‘I’LerM(M) exp('jr(—i_m)>

m=0 M
—i2n L
= eXp(M )f(X)M,L- ®)
This means that
F@ur EY " gramm VLm0 ©)
m=0

is a SFFF at angles2/ M with eigenvalue ex@-i2n L/M). Because the SFFF of order
M but different L are expanded into disjoint series of Hermite—Gauss functions they are
orthogonal to each other

f FOMLF @y =" grinug) i / WL ()W (x) e

m=0 j=0

= |gLmm|*8Ls (10)

where* means the complex conjugate. So we can conclude that any fungtionfrom

L? can be represented as a sumMforthogonal SFFFs of orde¥ (7). In particular for

M = 2 the sum (7) is the well known decomposition into the evier0) and odd [ = 1)
functions, forM = 4 it is the linear combination of four self-Fourier functions [7]. In the
limit case M — oo we have the Hermite—Gauss expansion (6). Note that, because of (7)
and the property that a SFFF far= 27/M is also a SFFF foka, the fractional FT of

g(u) at angle Zk/M is a linear combination of the SFFFs in (9) with some phase shifts

—i27rkL>

(11)

M-1
2nk/M _
R [g(w)](x) = Lz:; fm exp( iy

wherek =0,1,....

4. Synthesis of self-fractional Fourier functions and mode selection

It has been shown in [2] that a SFFF of orddr can be constructed from any generator
function g(u) € L? through the following procedure

M i2m Lk o (k—1) /M
FmL = cZexp(M> RET=DM )] (x) (12)
k=1

whereC is an arbitrary constant.
Let us now pay attention to the physical meaning of this procedure. Substituting in
relation (12) the generator functigq(u) in the form (6), and using (5), we have

00 M 2
FOme=CY g0 exp('];(Lk ~k— 1>n))
n=0 k=1

> 27 L\ <L 27
=CD  ga¥(x) exp(—M> > exp(M(k —1)(L — n)) . (13)

n=0 k=1
It is easy to see that summarizing ovegives 0 for anyn except when

n—L=mM (14)
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wherem is an integer. In this case it givéd. So we can write

2L\ &
f(x)M,L - CM eXp _7 gL+mM\IJL+mM(x)~ (15)
m=0

Then choosing for normalizatio = M~ exp(i2r L/M) we have

oo
SO =Y 8rimm VL mm(X). (16)

m=0
Thus the procedure for the construction of the SFFF means the selection of modes of
generator function in according to the rule (14). It is easy to see (as was considered in the
previous section) that the SFFF of order but different L are orthogonal to each other
even if they were constructed from different generator functions.

Comparing the relations (6) and (16) one can represent the generator function through

the sum ofM orthogonal SFFFs of ordew

M-1
g)=> fmL 17)
L=0
where
M .
P = 47 D oexp(ZEEE ) R Mg 18)
k=1

Let us now consider a limi4 — oo. It means that a function should be a SFFF for
any «. It is well known that such functions are the Hermite—Gauss functions (4). In the
limit case we can puha = 27 /M and write (18) as

. 1 (=
im f(ws = f@nr= 5 [ XPlal R[]0 de  (19)
M—o0 27'[ 0
Then using the representation (13) and (5) we find that
1 [ e
F@oer =5 fo exp(uaL)R“[;gnwm](x)da
00 1 2
= Zg,, W, (x)— / explic(L —n)) da = g, Wy (x). (20)
n=0 ZT[ 0

Thus the integration of the fractional FT at angl®f any functiong («) with an additional
phase shift expaa L) over one period of the parameterselects modd. in sum (6)

1 ap+21 ]
o explio L) R*[g(u)] (x) dat = g, W (x). (21)
gL is given by
o= [ swwiaod (22)

In particular, forL = 0, we have that the integration of the fractional FT of any function
g(u) from L? on « gives the Gauss function

1 2
or [ L6 de = goexp—a2/2 23
T Jo
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() 2
g = n’1/4/ g(u) exp(—é) du.

So we can conclude that the synthesis of the SFFF from a gengrajdnas the physical
meaning of a mode selection. Thus the SFFF of omdeand indexL contains only the
modesL + mM of the generator function, expanded in Hermite—Gauss functions, where
m=0,1,.... For infinite M, this reduces to a single mode which is thédermite—Gauss
function.

We finally note that the previous results can be easily extended to the multidimensional
case if the fractional Fourier operator acts independently on the different coordinates.

where
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