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LETTER TO THE EDITOR

Self-fractional Fourier functions and selection of modes
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Katholieke Universiteit Leuven, Department of Electrical Engineering ESAT, Kardinaal
Mercierlaan 94, B-3001 Leuven, Belgium

Received 23 December 1996

Abstract. It is shown that any function fromL2 can be represented as a linear combination
of M self-fractional Fourier functions of orderM, which are orthogonal to each other. Each
of them contains a selection of Hermite–Gauss modes of the generator function. The physical
meaning of the synthesis of self-fractional Fourier functions is discussed.

1. Introduction

Self-fractional Fourier functions (SFFFs) [1–4], which are invariant under the fractional
Fourier transform (fractional FT) [5] for some angle, are closely related to imaging
phenomena in first-order optical systems and has applications in the theory of laser resonator
modes. They are eigenfunctions of the corresponding fractional FT operator. SFFFs cover,
as a particular case, self-Fourier functions (SFFs) [6–9], whose Fourier transforms (FTs)
are identical to themselves. It has been shown [1, 2] how to generate a SFFF from any
transformable function for some angle 2πN/M, whereM and N are relatively prime
integers. Moreover, a SFFF for an angle 2πN/M is also one for angles 2πj/M, j = 1, 2, . . .
[2]. This allows us to define a SFFF of orderM. The only SFFFs for anglesα such that
α/2π is an irrational number are the Hermite–Gauss functions [3].

Here we will prove that any function fromL2 can be represented as a sum ofM self-
fractional Fourier functions of orderM which are orthogonal to each other. Also it will be
shown thatM orthogonal SFFFs of orderM can be constructed from any fractional Fourier
transformable generator function. We will show that the procedure for the construction of a
SFFF corresponds to a mode filtration of the related generator function, which in the limit
caseM →∞ reduces to a one mode selection.

2. Some definitions

The fractional FT at an angleα of a functionf (x) is given as follows [10, 11]

[Rαf (x)](u) =
∫ ∞
−∞

f (x)Kα(x, u)dx (1)

with the kernel

Kα(x, u) =
√

1− i cotα

2π
exp

(
i
cosα(x2+ u2)− 2xu

2 sinα

)
. (2)

† Also: A L Mintz Radiotechnical Institute, Moscow, Russia.
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This transform describes, except for a phase shiftα/2, the time evolution of the wave
function of the harmonic oscillator [12], as well as the wave propagation through a quadratic
refractive index medium in paraxial approximation [11–14]. Ifα or α + π is a multiple of
2π , the kernelKα(x, u) reduces toδ(x − u) or δ(x + u), respectively. Thus the fractional
FT at angle 2πn (n is an integer) corresponds to the identity operator. Forα = π/2,
relationship (1) is the ordinary Fourier transform (FT).

A function fα(x) is a self-fractional Fourier function for angleα if it satisfies the
following equation

Rα[fα(x)](u) = Afα(u) (3)

whereA is a complex constant factor. In other words,fα(x) is an eigenfunction of the
corresponding fractional FT operatorRα with eigenvalueA. From (1), (2) and (3) it follows
that any arbitrary function is a SFFF forα = 2πn, a symmetric (even or odd) function is
SFFF forα = πn, and that a SFF is SFFF forα = πn/2, wheren is an integer.

It is well known from quantum mechanics (see, e.g., [12]) that the Hermite–Gauss
functions9n(u)

9n(u) = (
√
π2nn!)−1/2 exp(−u2/2)Hn(u) (4)

whereHn(u) are the Hermite polynomials, are SFFFs for any angleα

Rα[9n(u)](x) = exp(−iαn)9n(x) (5)

with eigenvalue exp(−iαn). Note that the kernel of the fractional FT equals the propagator
of the non-stationary Schrödinger equation for the harmonic oscillator, except for the factor
exp(iα/2).

It has been proven [3] that ifα/2π is an irrational number then the Hermite–Gauss
functions are the only solutions of (3).

If α/2π is rational we can represent an angleα in the formα = 2πN/M, whereN
andM are relatively prime integers andN < M. Then as was proved in [2], a SFFF for
any angleα = 2πN/M is also one for the angle 2π/M and vice versa. This allows us to
define a SFFF of orderM, which is an eigenfunction of the fractional Fourier transform
operatorR2π/M .

From the additive property for fractional FTRαRβ = Rα+β [10] and (3) it immediately
follows that if a function is a SFFF forα = 2π/M with eigenvalueA it is also one forαk
(k = 1, 2, . . .) with eigenvalueAk. Moreover, taking into account the Parseval relation for
the fractional FT [10] and the fact that the fractional FT is periodic:R2π [f (x)](u) = f (u)
implies thatAM = 1 , so we get thatA = exp(±i2πL/M) whereL = 1, . . . ,M.

3. Decomposition on the self-fractional Fourier functions

It has been shown in [7] that any Fourier transformable function is the linear combination
of four self-Fourier functions. Let us prove that any function fromL2 can be represented
as a linear combination ofM orthogonal SFFFs of orderM.

Because the Hermite–Gauss functions form a complete set in theL2 space, any function
g(u) that belongs to this space can be expanded as

g(u) =
∞∑
n=0

gn9n(u). (6)

Subdividing the series intoM partial ones we have

g(u) =
M−1∑
L=0

( ∞∑
m=0

gL+mM9L+mM(u)
)

def=
M−1∑
L=0

f (u)M,L. (7)
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According to (5) the fractional FT off (u)M,L at the angleα = 2π/M is

R2π/M [f (u)M,L](x) =
∞∑
m=0

gL+mM9L+mM(u) exp

(−i2π(L+mM)
M

)
= exp

(−i2πL

M

)
f (x)M,L. (8)

This means that

f (u)M,L
def=
∞∑
m=0

gL+mM9L+mM(u) (9)

is a SFFF at angle 2π/M with eigenvalue exp(−i2πL/M). Because the SFFF of order
M but differentL are expanded into disjoint series of Hermite–Gauss functions they are
orthogonal to each other∫ ∞
−∞

f (x)M,Lf (x)
∗
M,J dx =

∞∑
m=0

∞∑
j=0

gL+mMg∗J+jM

∫ ∞
−∞

9L+mM(x)9∗J+jM(x) dx

= |gL+mM |2δLJ (10)

where ∗ means the complex conjugate. So we can conclude that any functiong(u) from
L2 can be represented as a sum ofM orthogonal SFFFs of orderM (7). In particular for
M = 2 the sum (7) is the well known decomposition into the even (L = 0) and odd (L = 1)
functions, forM = 4 it is the linear combination of four self-Fourier functions [7]. In the
limit caseM → ∞ we have the Hermite–Gauss expansion (6). Note that, because of (7)
and the property that a SFFF forα = 2π/M is also a SFFF forkα, the fractional FT of
g(u) at angle 2πk/M is a linear combination of the SFFFs in (9) with some phase shifts

R2πk/M [g(u)](x) =
M−1∑
L=0

f (u)M,L exp

(−i2πkL

M

)
(11)

wherek = 0, 1, . . . .

4. Synthesis of self-fractional Fourier functions and mode selection

It has been shown in [2] that a SFFF of orderM can be constructed from any generator
function g(u) ∈ L2 through the following procedure

f (x)M,L = C
M∑
k=1

exp

(
i2πLk

M

)
R2π(k−1)/M [g(u)](x) (12)

whereC is an arbitrary constant.
Let us now pay attention to the physical meaning of this procedure. Substituting in

relation (12) the generator functiong(u) in the form (6), and using (5), we have

f (x)M,L = C
∞∑
n=0

gn9n(x)

M∑
k=1

exp

(
i2π

M
(Lk − (k − 1)n)

)

= C
∞∑
n=0

gn9n(x) exp

(
− i2πL

M

) M∑
k=1

exp

(
i2π

M
(k − 1)(L− n)

)
. (13)

It is easy to see that summarizing overk gives 0 for anyn except when

n− L = mM (14)



L214 Letter to the Editor

wherem is an integer. In this case it givesM. So we can write

f (x)M,L = CM exp

(
− i2πL

M

) ∞∑
m=0

gL+mM9L+mM(x). (15)

Then choosing for normalizationC = M−1 exp(i2πL/M) we have

f (x)M,L =
∞∑
m=0

gL+mM9L+mM(x). (16)

Thus the procedure for the construction of the SFFF means the selection of modes of
generator function in according to the rule (14). It is easy to see (as was considered in the
previous section) that the SFFF of orderM but differentL are orthogonal to each other
even if they were constructed from different generator functions.

Comparing the relations (6) and (16) one can represent the generator function through
the sum ofM orthogonal SFFFs of orderM

g(x) =
M−1∑
L=0

f (x)M,L (17)

where

f (x)M,L = 1

M

M∑
k=1

exp

(
i2πL(k − 1)

M

)
R2π(k−1)/M [g(u)](x). (18)

Let us now consider a limitM → ∞. It means that a function should be a SFFF for
any α. It is well known that such functions are the Hermite–Gauss functions (4). In the
limit case we can put1α = 2π/M and write (18) as

lim
M→∞

f (x)M,L = f (x)∞,L = 1

2π

∫ 2π

0
exp(iαL)Rα[g(u)](x) dα. (19)

Then using the representation (13) and (5) we find that

f (x)∞,L = 1

2π

∫ 2π

0
exp(iαL)Rα

[ ∞∑
n=0

gn9n(u)

]
(x) dα

=
∞∑
n=0

gn9n(x)
1

2π

∫ 2π

0
exp(iα(L− n)) dα = gL9L(x). (20)

Thus the integration of the fractional FT at angleα of any functiong(u) with an additional
phase shift exp(iαL) over one period of the parameterα selects modeL in sum (6)

1

2π

∫ α0+2π

α0

exp(iαL)Rα[g(u)](x) dα = gL9L(x). (21)

gL is given by

gL =
∫ ∞
−∞

g(u)9L(u) du. (22)

In particular, forL = 0, we have that the integration of the fractional FT of any function
g(u) from L2 on α gives the Gauss function

1

2π

∫ 2π

0
Rα[g(u)](x) dα = g0 exp(−x2/2) (23)
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where

g0 = π−1/4
∫ ∞
−∞

g(u) exp

(
−u

2

2

)
du.

So we can conclude that the synthesis of the SFFF from a generatorg(u) has the physical
meaning of a mode selection. Thus the SFFF of orderM and indexL contains only the
modesL + mM of the generator function, expanded in Hermite–Gauss functions, where
m = 0, 1, . . . . For infiniteM, this reduces to a single mode which is theL-Hermite–Gauss
function.

We finally note that the previous results can be easily extended to the multidimensional
case if the fractional Fourier operator acts independently on the different coordinates.

This work has been partially supported from a Concerted Action Project of the Flemish
Community entitledModel-based Information SystemsGOA-MIPS.
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